17 research outputs found

    A high efficiency input/output coupler for small silicon photonic devices

    Get PDF
    Coupling light from an optical fibre to small optical waveguides is particularly problematic in semiconductors, since the refractive index of the silica fibre is very different from that of a semiconductor waveguide. There have been several published methods of achieving such coupling, but none are sufficiently efficient whilst being robust enough for commercial applications. In this paper experimental results of our approach called a Dual-Grating Assisted Directional Coupler, are presented. The principle of coupling by this novel method has been successfully demonstrated, and a coupling efficiency of 55% measured

    Ultrafast electro-optical disk modulators for logic, communications, optical repeaters, and wavelength converters

    Get PDF
    We propose a U-shaped pn junction in a silicon-on-insulator microdisk resonator to effectively double the junction–mode overlap in the state-of-the-art, vertical pn junction microdisk electro-optical (EO) modulators. The U-shaped pn junction promotes the maximum overlap between the junction depletion zone and the whispering gallery optical mode in the microdisk. By fully depleting the p region of the npn-sequenced U-junction, the capacitance is reduced below 3 fF, which significantly improves the speed and power performance. In this work, we implement the high-efficiency, depleted U-junction design to maximize the operating bandwidth of EO modulators, EO logic elements, EO 2 × 2 switches for wavelength-division cross-connects, 2 × 2 reconfigurable optical add–drop multiplexers, optical-to-electrical-to-optical (OEO) repeaters-with-gain, OEO wavelength converters, and 2 × 2 optical–optical logic gates. These devices all operate in the 7.6-to-50 GHz bandwidth range with ultralow energy consumption between 0.4 and 9.8 fJ/bit. By using CMOS-compatible materials and fabrication-feasible design dimensions, our proposed high-performance devices offer a promising potential in next-generation, high-volume electro-optical communications and computing circuits

    Photonic molecules and spectral engineering

    Full text link
    This chapter reviews the fundamental optical properties and applications of pho-tonic molecules (PMs) - photonic structures formed by electromagnetic coupling of two or more optical microcavities (photonic atoms). Controllable interaction between light and matter in photonic atoms can be further modified and en-hanced by the manipulation of their mutual coupling. Mechanical and optical tunability of PMs not only adds new functionalities to microcavity-based optical components but also paves the way for their use as testbeds for the exploration of novel physical regimes in atomic physics and quantum optics. Theoretical studies carried on for over a decade yielded novel PM designs that make possible lowering thresholds of semiconductor microlasers, producing directional light emission, achieving optically-induced transparency, and enhancing sensitivity of microcavity-based bio-, stress- and rotation-sensors. Recent advances in material science and nano-fabrication techniques make possible the realization of optimally-tuned PMs for cavity quantum electrodynamic experiments, classical and quantum information processing, and sensing.Comment: A review book chapter: 29 pages, 19 figure

    Coupling to nanophotonic waveguides using a dual grating-assisted directional coupler

    No full text
    An analysis of a device we have called a dual grating-assisted directional coupler (DGADC) in silicon-on-insulator technology is presented. The device enables efficient coupling from optical fibres to small waveguides, typically <1 µm in cross-sectional dimensions. Coupling efficiency and device length are determined as functions of layer thicknesses and refractive indices, grating periods, depths and duty ratios, and finally wavelength. For our example calculation of coupling to a 250 nm silicon waveguide, this efficient and robust coupler can have coupling efficiency as high as 90%, while the wavelength range can have an FWHM of ~1.6 nm at resonance. Fabrication tolerances have also been analysed and they are up to two orders of magnitude larger than those of a GADC with only one grating

    Dual grating-assisted directional coupling between fibers and thin semiconductor waveguides

    No full text
    A novel dual grating-assisted directional coupler (DGADC) for coupling an optical fiber with a thin semiconductor waveguide is proposed. As an example, a DGADC in silicon-on-insulator is discussed. Maximum coupling efficiency in excess of 90% can be obtained using this coupler, while the highest coupling efficiency previously reported was only 40%

    A high efficiency label-free photonic biosensor based on vertically stacked ring resonators

    No full text
    In this paper we propose an optical biosensor based on two vertically stacked Silicon on Insulator (SOI) micro-ring resonators interacting with a microfluidic ring channel. This device behaves as a resonant optical coupler and it is very sensitive to the variation of the coupling coefficient between the two vertically stacked ring resonators. A ring microfluidic channel is proposed in the coupling region between the two vertically stacked ring resonators. The inner walls of the channel are funzionalized in order to the trap a specific biological species. Assuming a biotin-streptavidin system, the straptividin trapping gives rise to a change of the biological thickness of about 3 nm. This thickness increase of the deposited layer leads to a consequent change in the coupling strength between the two rings. These theoretical predictions have been validated by using both 3D Finite-Difference Time-Domain (FDTD) and 3D full-vectorial Finite Element Method (FEM) approaches. Moreover, by appropriately choosing the design parameters of the micro-resonant structure, we evaluate a sensitivity of the spectral response to the streptavidin adlayer variation of about 20% nm−1 for TE polarization and 34% nm−1 for TM polarization, which represents an important achievement to obtain selective SOI bio-sensors with ultra-high resolution

    Coupling from optical fibres to fast silicon modulators

    No full text
    In silicon based photonic circuits, optical modulation is usually performed via the plasma dispersion effect, which is arelatively slow process. Until recently, most researchers utilised Silicon on Insulator (501) waveguides with cross-sectional dimensions of the order of 5 microns. This limits the speed of devices based on the plasma dispersion effect due to the finite transit time of charge carriers. Consequently moving to smaller dimensions will increase device speed, as well as providing other advantages of closer packing density, smaller bend radius, and cost effective fabrication. As a result, the trend in recent years has been a move to smaller waveguides, of the order of 1 micron in cross sectional dimensions. However, coupling light to such small waveguides is relatively inefficient. In the literature, the problem of coupling optical fibres to thin semiconductor waveguides has not been solved sufficiently well to obtain both high coupling efficiency and good fabrication tolerances, due to large difference between the fibre and the waveguide in both dimensions and refractive indices.In this paper we discuss both the design of small waveguide modulators (of the order of ~1 micron) together with a novel theoretical solution to the coupling problem. An example of coupling light to a thin silicon waveguide is given, as well as a discussion of a number of modulator design issues
    corecore